3.2347 \(\int \frac{(a+b x+c x^2)^{3/2}}{d+e x} \, dx\)

Optimal. Leaf size=252 \[ \frac{\sqrt{a+b x+c x^2} \left (-2 c e (5 b d-4 a e)+b^2 e^2-2 c e x (2 c d-b e)+8 c^2 d^2\right )}{8 c e^3}-\frac{(2 c d-b e) \left (-4 c e (2 b d-3 a e)-b^2 e^2+8 c^2 d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{16 c^{3/2} e^4}+\frac{\left (a e^2-b d e+c d^2\right )^{3/2} \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{e^4}+\frac{\left (a+b x+c x^2\right )^{3/2}}{3 e} \]

[Out]

((8*c^2*d^2 + b^2*e^2 - 2*c*e*(5*b*d - 4*a*e) - 2*c*e*(2*c*d - b*e)*x)*Sqrt[a + b*x + c*x^2])/(8*c*e^3) + (a +
 b*x + c*x^2)^(3/2)/(3*e) - ((2*c*d - b*e)*(8*c^2*d^2 - b^2*e^2 - 4*c*e*(2*b*d - 3*a*e))*ArcTanh[(b + 2*c*x)/(
2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(16*c^(3/2)*e^4) + ((c*d^2 - b*d*e + a*e^2)^(3/2)*ArcTanh[(b*d - 2*a*e + (2
*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/e^4

________________________________________________________________________________________

Rubi [A]  time = 0.34288, antiderivative size = 252, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {734, 814, 843, 621, 206, 724} \[ \frac{\sqrt{a+b x+c x^2} \left (-2 c e (5 b d-4 a e)+b^2 e^2-2 c e x (2 c d-b e)+8 c^2 d^2\right )}{8 c e^3}-\frac{(2 c d-b e) \left (-4 c e (2 b d-3 a e)-b^2 e^2+8 c^2 d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{16 c^{3/2} e^4}+\frac{\left (a e^2-b d e+c d^2\right )^{3/2} \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{e^4}+\frac{\left (a+b x+c x^2\right )^{3/2}}{3 e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)^(3/2)/(d + e*x),x]

[Out]

((8*c^2*d^2 + b^2*e^2 - 2*c*e*(5*b*d - 4*a*e) - 2*c*e*(2*c*d - b*e)*x)*Sqrt[a + b*x + c*x^2])/(8*c*e^3) + (a +
 b*x + c*x^2)^(3/2)/(3*e) - ((2*c*d - b*e)*(8*c^2*d^2 - b^2*e^2 - 4*c*e*(2*b*d - 3*a*e))*ArcTanh[(b + 2*c*x)/(
2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(16*c^(3/2)*e^4) + ((c*d^2 - b*d*e + a*e^2)^(3/2)*ArcTanh[(b*d - 2*a*e + (2
*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/e^4

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (a+b x+c x^2\right )^{3/2}}{d+e x} \, dx &=\frac{\left (a+b x+c x^2\right )^{3/2}}{3 e}-\frac{\int \frac{(b d-2 a e+(2 c d-b e) x) \sqrt{a+b x+c x^2}}{d+e x} \, dx}{2 e}\\ &=\frac{\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt{a+b x+c x^2}}{8 c e^3}+\frac{\left (a+b x+c x^2\right )^{3/2}}{3 e}+\frac{\int \frac{\frac{1}{2} \left (4 c e (b d-2 a e)^2-d (2 c d-b e) \left (4 b c d-b^2 e-4 a c e\right )\right )-\frac{1}{2} (2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right ) x}{(d+e x) \sqrt{a+b x+c x^2}} \, dx}{8 c e^3}\\ &=\frac{\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt{a+b x+c x^2}}{8 c e^3}+\frac{\left (a+b x+c x^2\right )^{3/2}}{3 e}+\frac{\left (c d^2-b d e+a e^2\right )^2 \int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx}{e^4}-\frac{\left ((2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right )\right ) \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{16 c e^4}\\ &=\frac{\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt{a+b x+c x^2}}{8 c e^3}+\frac{\left (a+b x+c x^2\right )^{3/2}}{3 e}-\frac{\left (2 \left (c d^2-b d e+a e^2\right )^2\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x}{\sqrt{a+b x+c x^2}}\right )}{e^4}-\frac{\left ((2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{8 c e^4}\\ &=\frac{\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x\right ) \sqrt{a+b x+c x^2}}{8 c e^3}+\frac{\left (a+b x+c x^2\right )^{3/2}}{3 e}-\frac{(2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right ) \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{16 c^{3/2} e^4}+\frac{\left (c d^2-b d e+a e^2\right )^{3/2} \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x+c x^2}}\right )}{e^4}\\ \end{align*}

Mathematica [A]  time = 0.453537, size = 236, normalized size = 0.94 \[ \frac{2 \sqrt{c} \left (e \sqrt{a+x (b+c x)} \left (2 c e (16 a e-15 b d+7 b e x)+3 b^2 e^2+4 c^2 \left (6 d^2-3 d e x+2 e^2 x^2\right )\right )-24 c \left (e (a e-b d)+c d^2\right )^{3/2} \tanh ^{-1}\left (\frac{2 a e-b d+b e x-2 c d x}{2 \sqrt{a+x (b+c x)} \sqrt{e (a e-b d)+c d^2}}\right )\right )-3 (2 c d-b e) \left (4 c e (3 a e-2 b d)-b^2 e^2+8 c^2 d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+x (b+c x)}}\right )}{48 c^{3/2} e^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2)^(3/2)/(d + e*x),x]

[Out]

(-3*(2*c*d - b*e)*(8*c^2*d^2 - b^2*e^2 + 4*c*e*(-2*b*d + 3*a*e))*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b
+ c*x)])] + 2*Sqrt[c]*(e*Sqrt[a + x*(b + c*x)]*(3*b^2*e^2 + 2*c*e*(-15*b*d + 16*a*e + 7*b*e*x) + 4*c^2*(6*d^2
- 3*d*e*x + 2*e^2*x^2)) - 24*c*(c*d^2 + e*(-(b*d) + a*e))^(3/2)*ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x + b*e*x)/(2*
Sqrt[c*d^2 + e*(-(b*d) + a*e)]*Sqrt[a + x*(b + c*x)])]))/(48*c^(3/2)*e^4)

________________________________________________________________________________________

Maple [B]  time = 0.225, size = 1946, normalized size = 7.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(3/2)/(e*x+d),x)

[Out]

1/3/e*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)+1/4/e*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+
x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*x*b-1/2/e^2*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2
)*x*c*d+1/8/e/c*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*b^2-5/4/e^2*((d/e+x)^2*c+(b*
e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*b*d+3/4/e/c^(1/2)*ln((1/2*(b*e-2*c*d)/e+(d/e+x)*c)/c^(1/2)+(
(d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*a*b-3/2/e^2*ln((1/2*(b*e-2*c*d)/e+(d/e+x)*c)
/c^(1/2)+((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^(1/2)*d*a-1/16/e/c^(3/2)*ln((1/2
*(b*e-2*c*d)/e+(d/e+x)*c)/c^(1/2)+((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*b^3-3/8/e
^2*ln((1/2*(b*e-2*c*d)/e+(d/e+x)*c)/c^(1/2)+((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))
/c^(1/2)*b^2*d+1/e*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*a+1/e^3*((d/e+x)^2*c+(b*e
-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*c*d^2+3/2/e^3*ln((1/2*(b*e-2*c*d)/e+(d/e+x)*c)/c^(1/2)+((d/e+
x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^(1/2)*d^2*b-1/e^4*ln((1/2*(b*e-2*c*d)/e+(d/e+x)
*c)/c^(1/2)+((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^(3/2)*d^3-1/e/((a*e^2-b*d*e+c
*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x
)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*a^2+2/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)
*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d
)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*a*b*d-2/e^3/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-
b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a
*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*a*c*d^2-1/e^3/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)
/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c
*d^2)/e^2)^(1/2))/(d/e+x))*b^2*d^2+2/e^4/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*
c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(
1/2))/(d/e+x))*b*d^3*c-1/e^5/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+
x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x
))*c^2*d^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x + c x^{2}\right )^{\frac{3}{2}}}{d + e x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(3/2)/(e*x+d),x)

[Out]

Integral((a + b*x + c*x**2)**(3/2)/(d + e*x), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError